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Abstract—We derive the channel-coding sphere-packing expo-
nent under a per-codeword cost constraint. The proof is based on
hypothesis testing and holds for continuous memoryless channels.
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I. INTRODUCTION

The behavior of the channel-coding error probability may
be quantified in terms of error exponents, defined as the rate
of the error probability’s exponential decay in the block length
[1], [2]. Lower bounds on the exponent for discrete memory-
less channels (DMC) are easily obtained by random-coding
techniques. In contrast, the computation of upper bounds,
satisfied by every code, is more challenging since code-specific
bounds need to be optimized over each possible codebook.
Nevertheless, certain bounds avoid this optimization, e. g. the
sphere-packing bound [3], which is exponentially tight for
rates above the critical rate of the channel [1], [3].

The sphere-packing exponent has been derived using differ-
ent techniques. By building on an instance of binary hypothesis
testing, Shannon, Gallager and Berlekamp [3] derived an error
bound with the sphere-packing exponent (SP67); also based on
hypothesis testing, Blahut proposed an alternative derivation
of this bound in [4]; the sphere-packing exponent was also
obtained by using combinatorial methods in [5]; and based
on the method of types in [2]. The works [6], [7] addressed
the tightness of the SP67 bound for short to moderate block
lengths by improving the pre-exponential and rate penalty
terms. Recently, the metaconverse bound [8] has been shown
to have the exponential decay of the sphere-packing bound [9].

Cost constraints were first included in the derivation of the
sphere-packing bound in [10], by using a geometric approach
for the specific case of the Gaussian channel. The SP67 [3]
can also be extended to introduce cost constraints in general
memoryless semicontinuous channels [1, p. 329, footnote]. In
this work, we generalize the derivation of the sphere-packing
exponent in [4] to consider per-codeword cost constraints. In
contrast to the derivation in [3], no assumption of constant-
composition codewords is needed. This allows to extend the
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cost-constrained sphere-packing exponent to arbitrary continu-
ous memoryless channels. Building on this result, we establish
a connection between the cost-constrained sphere-packing and
Csiszár sphere-packing exponent for constant composition
codes [2, Ch. 2, Th. 5.3].

II. PRELIMINARIES

We study the problem of transmitting M equiprobable
messages over a DMC using length-n block codes. The
channel law is given by Wn(y|x) =

∏n
i=1W (yi|xi), x =

(x1, . . . , xn), x ∈ X , y = (y1, . . . , yn), y ∈ Y . We
define a separable cost function fn(x) ,

∑n
i=1 f(xi) with

f(x) denoting a real-valued scalar cost. A cost-constrained
codebook C is defined as a set of codewords {xm}Mm=1 such
that fn(xm) ≤ nξ, m = 1, . . . ,M , where ξ is the per-symbol
cost cap. The coding rate is R , 1

n logM .
An encoder maps the source message m ∈ {1, . . . ,M} to

a length-n codeword xm, which is then transmitted over the
channel. The channel output y is decoded at the receiver fol-
lowing a maximum likelihood (ML) criterium. Let us denote
the output of the decoder as m̂(y). Then, the error probability
incurred when a message m was transmitted is

εm(C) , Pr{m̂(Y ) 6= m}, (1)

and the error probability averaged over all codewords is thus

ε(C) , 1

M

M∑
m=1

εm(C). (2)

Similarly, we define the maximal error probability as
εmax(C) , maxm εm(C).

We say that an error exponent E > 0 is achievable if there
exists a sequence of codes Cn, n = 1, 2, . . . , such that the
average error probability ε(Cn) is upper-bounded as

ε(Cn) ≤ e−nE+o(n), (3)

where o(n) satisfies limn→∞ o(n)/n = 0.
Any achievable error exponent for a DMC is upper

bounded [2]–[5] as E ≤ Esp(R−δ), for any δ > 0, where the
sphere-packing exponent Esp(R) is given by

Esp(R) , sup
ρ≥0

{
E0(ρ)− ρR

}
. (4)



Gallager’s E0 function is E0(ρ) , max
P

E0(ρ, P ), with

E0(ρ, P ) , − log
∑
y

(∑
x

P (x)W (y|x)
1

1+ρ

)1+ρ

. (5)

The error exponent achievable by a sequence of cost con-
strained codebooks is upper bounded as E ≤ Ecost

sp (R − δ),
for arbitrary δ > 0, where

Ecost
sp (R) , sup

ρ≥0

{
Ecost

0 (ρ)− ρR
}
, (6)

with Ecost
0 (ρ) , max

P∈Pξ,s≥0
Ecost

0 (ρ, P, s), Pξ being the set of

input distributions satisfying the cost constraint, and

Ecost
0 (ρ, P, s),−log

∑
y

(∑
x

P (x)es(f(x)−ξ)W (y|x)
1

1+ρ

)1+ρ

.

(7)

A. Hypothesis Testing
Based on an observation v ∈ V in some alphabet V , consider

a binary hypothesis test between the hypotheses

H0 : V ∼ P0, (8)
H1 : V ∼ P1, (9)

where P0 and P1 are distributions over V . For a binary
hypothesis test T : V → {H0,H1} we define the type-I error
as deciding H1 when the true hypothesis is H0; and the type-
II error as deciding H0 when the true hypothesis is H1. These
error probabilities are respectively given by

εI(T ) = P0

{
T (V ) = H1

}
, (10)

εII(T ) = P1

{
T (V ) = H0

}
, (11)

where P0{E} and P1{E} denote the probability of the event E
computed with respect to P0 and P1, respectively. We define
the smallest type-I error among all (possibly randomized) tests
T with a type-II error at most β as

αβ(P0, P1) , min
T :εII(T )≤β

εI(T ). (12)

A bound on the exponential behavior of lowest type-I and
type-II errors was found by Blahut in [4, Th. 10]. Let us define

e(r) , sup
ρ≥0

−ρr − log

(∑
v

P0(v)
1

1+ρP1(v)
ρ

1+ρ

)1+ρ
 ,

(13)

and, for ρ̂ maximizing (13) and for every v, let us define

p̂(v) ,
P0(v)

1
1+ρ̂P1(v)

ρ̂
1+ρ̂∑

v P0(v)
1

1+ρ̂P1(v)
ρ̂

1+ρ̂

, (14)

Theorem 1 ([4, Th. 10]): Let ν > 0 be given, and let ζ ∈
(0, 1) be arbitrary. For any β ≤ ζe−(r+ν) we have that

αβ(P0, P1) ≥
(

1− σ2
0 + σ2

1

ν2
− ζ
)
e−(e(r)+ν), (15)

where σ2
i denotes the variance of the random variable

log p̂(V )
Pi(V ) with respect to the distribution p̂, i = 0, 1.

III. COST-CONSTRAINED SPHERE-PACKING

For each message m = 1, . . . ,M , and based on the channel
output y, we define a binary hypothesis test between P0 =
Wn(·|xm) and P1 = Qn, where Qn is a distribution over Yn
independent of m. Consider a (possibly suboptimal) bank of
tests {Tm} defined as follows. Based on the channel decoder,
the test Tm decides H0 if m̂(y) = m, and H1 otherwise. For
any partition on the output space induced by m̂(y), it holds

M∑
m=1

εII(Tm) =
∑
y

Qn(y) = 1. (16)

Then, since εII(Tm) ≥ 0, m = 1 . . . ,M , there must exist at
least one message m such that εII(Tm) ≤ 1

M . In the remainder
of this paper, we fix m such that εII(Tm) ≤ 1

M .
The error probability of this message m is

εm(C) = Pr{m̂(Y ) 6= m} = εI(Tm). (17)

As (12) is a lower bound for any test, and using that εII(Tm) ≤
1
M , the maximal error probability can be lower bounded as

εmax(C) ≥ εm(C) ≥ α 1
M

(
Wn(·|xm), Qn

)
. (18)

We now bound the exponential behavior of (18). We define

Λn(ρ,Qn,x),− 1

n
log

(∑
y

Wn(y|x)
1

1+ρQn(y)
ρ

1+ρ

)1+ρ

,

(19)

and the sequences

ν′n , ν′′n + n−1 log ζ, (20)

ν′′n , nα−1, 1/2 < α < 1. (21)

For sufficiently large n, ν′n > 0. Then, we apply Theorem 1
with ν = nν′n, P0 = Wn(·|xm), P1 = Qn, and r = nR −
ν + log ζ. Since β = ζe−(r+ν) = 1

M , Theorem 1 yields

Emax , lim
n→∞

− 1

n
log εmax(Cn) (22)

≤ lim
n→∞

sup
ρ≥0

{
Λn(ρ,Qn,xm)− ρ (R− ν′′n)

}
+ lim
n→∞

(
ν′n −

1

n
log

(
1− σ2

0 + σ2
1

(nν′n)2
− ζ
))

. (23)

The second limit in (23) vanishes since, for ν′n in (20),
limn→∞ ν′n = 0, and limn→∞

σ2
i

(nν′
n)2 = limn→∞

σ2
i

n2α = 0,
since the variances σ2

i , i = 0, 1, are proportional to n, and
2α > 1. Then,

Emax ≤ lim
n→∞

sup
ρ≥0

{
Λn(ρ,Qn,xm)− ρ (R− ν′′n)

}
. (24)

For each n, we choose Qn such that we obtain the lowest upper
bound in (24). We next show that, for an arbitrary δ > 0,

Emax ≤ lim
n→∞

inf
Qn

sup
ρ≥0

{
Λn(ρ,Qn,xm)− ρ (R− ν′′n)

}
(25)

≤ lim
n→∞

sup
ρ≥0

inf
Qn

{
Λn(ρ,Qn,xm)− ρ(R− δ)

}
, (26)

where Qn is not allowed to depend on xm.



In order to show (26), assume first that the value of ρ
achieving the saddlepoint in (25) is finite. Then, there exists
ρ̄ <∞ such that

Emax≤ lim
n→∞

inf
Qn

sup
ρ≥0

{
Λn(ρ,Qn,xm)− ρ (R−ν′′n)

}
(27)

= lim
n→∞

inf
Qn

max
0≤ρ≤ρ̄

{
Λn(ρ,Qn,xm)− ρ (R−ν′′n)

}
(28)

= lim
n→∞

sup
0≤ρ≤ρ̄

inf
Qn

{
Λn(ρ,Qn,xm)− ρ (R−ν′′n)

}
, (29)

where in (28) we used that the saddle point is achieved at
ρ < ρ̄; and (29) follows from the Kneser-Fan minimax theorem
[11, Th. 4.2], since, for fixed Qn, the bracketed term in (28)
is concave in ρ, and, for fixed ρ it is convex in Qn. Then,
(26) follows from (29) by increasing the range over which
the maximization over ρ is performed, and by using that, for
arbitrary δ > 0 and sufficiently large n, ν′′n ≤ δ.

When the saddle point in (25) is attained at ρ → ∞, we
cannot apply Kneser-Fan minimax theorem. Let Λ′n(·) denote
the derivative of Λn(·) with respect to ρ. Since the optimizer
in (25) is ρ → ∞, it follows that Λ′n(ρ,Qn,xm) ≥ R −
ν′′n for all Qn, ρ ≥ 0. Using that, for sufficiently large n,
Λ′n(ρ,Qn,xm) ≥ R − ν′′n ≥ R − δ, the bound (26) becomes
Emax ≤ ∞, which is trivially true. Then, (26) holds regardless
the value of the optimizing ρ.

The dependence on the sequence of codebooks is present in
(26) through Λn(ρ,Qn,xm). This dependence is circumvented
by making use of the following property [1, Thm. 5.6.5].

Theorem 2: For ρ ≥ 0, let

µ0(y, ρ) ,
∑
x

P̂n(x)Wn(y|x)
1

1+ρ , (30)

where P̂n is an exponent-achieving distribution, i. e., P̂n(x) =∏n
i=1 P̂ (xi), P̂ = arg maxP

{
E0 (ρ, P )

}
.

Then, for any ρ ≥ 0 and any x, it holds that∑
y

Wn(y|x)
1

1+ρµ0(y, ρ)ρ ≥
∑
y

µ0(y, ρ)1+ρ. (31)

In (31), only the left-hand side depends on x. We define

Qn0,ρ(y) ,
µ0(y, ρ)1+ρ∑
y µ0(y, ρ)1+ρ

. (32)

Eq. (32) corresponds to that in [4, Cor. 4] (see also [2, p. 193,
Prob. 23], [3, Eq. (4.20)]). Using Theorem 2 it can be verified
that Λn

(
ρ,Qn0,ρ,xm

)
≤ E0(ρ) for every code in the sequence.

Hence, by letting Qn = Qn0,ρ in (26) we obtain

Emax ≤ sup
ρ≥0

{
E0(ρ)− ρ(R− δ)

}
= Esp(R− δ). (33)

In order to introduce a cost constraint into this formulation
we make use of the following extension of Theorem 2.

Theorem 3: For ρ ≥ 0, let

µ1(y, ρ) ,
∑
x

P̂n(x)eŝ(fn(x)−nξ)Wn(y|x)
1

1+ρ , (34)

where P̂n(x) =
∏n
i=1 P̂ (xi), and

{P̂ , ŝ} = arg max
P∈Pξ,s≥0

E1(ρ, P, s). (35)

For any x such that fn(x) ≤ nξ, it holds that∑
y

Wn(y|x)
1

1+ρµ1(y, ρ)ρ ≥
∑
y

µ1(y, ρ)1+ρ. (36)

Proof: See Appendix A.
We define

Qn1,ρ(y) =
µ1(y, ρ)1+ρ∑
y′ µ1(y′, ρ)1+ρ

. (37)

Substituting Qn = Qn1,ρ in (19) yields

Λn
(
ρ,Qn1,ρ,xm

)
≤ − 1

n
log

((∑
y

µ1(y, ρ)1+ρ

) 1
1+ρ
)1+ρ

(38)
= Ecost

0 (ρ). (39)

where in (38) we applied Theorem 3 for xm satisfying the cost
constraint; and (39) follows from the definition of µ1(y, ρ) and
the Ecost

0 function.
Hence, from (26) and (38)-(39), we obtain

Emax ≤ sup
ρ≥0

{
Ecost

0 (ρ)− ρ(R− δ)
}

= Ecost
sp (R− δ). (40)

For any code, ε(Cn) ≥ 1
2εmax(C′n) where C′n is an expur-

gated code obtained by removing from Cn the M/2 codewords
with highest error probability [4, Th. 20]. As the rate R is
unaffected by the expurgation, combining (33) and (40) yields
the following result.

Theorem 4: For a memoryless channel Wn, let E denote
the error exponent achievable by a sequence of codebooks Cn,
n = 1, 2, . . . , such that, for each value of n, the codewords
satisfy an individual (separable) cost constraint fn(xm) ≤ nξ,
m = 1, . . . ,M . It follows that, for any δ > 0,

E ≤ sup
ρ≥0

{
min

(
E0(ρ), Ecost

0 (ρ)
)
− ρ(R− δ)

}
. (41)

If the cost constraint is active for any P achieving E1(ρ),
then E1(ρ) ≤ E0(ρ). However, if the cost constraint is
non-active, E0(ρ) ≤ E1(ρ). Therefore, neither Esp(R) nor
Ecost

sp (R) dominates in general.
This theorem applies to codebooks satisfying a per-

codeword cost constraint. Extending Theorem 4 to codebooks
satisfying an average cost constraint is still an open problem.

IV. CONNECTION WITH CONSTANT COMPOSITION CODES

For a given n, consider a constant composition code with
empirical distribution Pn, i. e., every codeword x belonging
to Cn has a composition equal to Pn. We fix Qn to be an
arbitrary product distribution, Qn(y) =

∏n
i=1Q(yi). In this

case Λn
(
ρ,Qn,x

)
is independent of the specific code,

Λn
(
ρ,Qn,x

)
= −

∑
x

Pn(x) log

(∑
y

W (y|x)
1

1+ρQ(y)
ρ

1+ρ

)1+ρ

. (42)



For any sequence of constant composition codes such that
Pn → P as n→∞, from (26) and (42) it follows that

Emax ≤ sup
ρ≥0

{
E1(ρ,P)− ρ(R− δ)

}
, (43)

where

E1(ρ, P )

, min
Q

{
−
∑
x

P (x) log

(∑
y

W (y|x)
1

1+ρQ(y)
ρ

1+ρ

)1+ρ}
.

(44)

Eq. (43) corresponds to Csiszár sphere-packing bound for
constant composition codes [2, Ch. 2, Th. 5.3]. Optimizing
(43) over compositions that satisfy the cost constraint and
applying the expurgation argument, we obtain

E ≤ sup
ρ≥0

{
E1(ρ)− ρ(R− δ)

}
, (45)

where E1(ρ) , maxP∈Pξ E1(ρ, P ).
We next show that (45) coincides with (41) in Theorem 4.

To this end, let us consider the dual formulation of E1(ρ),
which is given by a double optimization over distributions P
satisfying the cost constraint, and over functions a : X → R
with finite average ā ,

∑
x P (x)a(x) [12, Th. 3.4]:

E1(ρ) = max
P∈Pξ,a

E1(ρ, P, a), (46)

E1(ρ, P, a),−log
∑
y

(∑
x

P (x)ea(x)−āW (y|x)
1

1+ρ

)1+ρ

.

(47)

Note the similarity between Ecost
0 (ρ, P, s) in (7) and (47).

While a(x) in the definition of E1(ρ, P, a) in (47) is an
arbitrary function to be optimized, f(x) in (7) denotes the
cost function, which is given.

Appendix B derives the optimality conditions for the
optimization problem in (46). Let us define P0 ,
arg maxP E0(ρ, P ). When P0 ∈ Pξ, the cost constraint is
not active in (46), and the maximum is attained for a(x) = ā,
∀x. Hence, in this case E1(ρ, P, a) becomes E0(ρ, P ), and
E1(ρ) = E0(ρ). In contrast, for P0 /∈ Pξ, the optimizing
a(·) is a(x) = sf(x), ∀x, for some s ≥ 0. Using that the
cost constraint holds with equality in this case, we obtain
E1(ρ) = Ecost

0 (ρ). By combining both possibilities, (46) yields
E1(ρ) = min

{
E0(ρ), Ecost

0 (ρ)
}

and (45) coincides with (41).

APPENDIX A
PROOF OF THEOREM 3

Let ρ ≥ 0 be fixed. Let us define

Φy(P, s) ,
∑
x

P (x)es(f(x)−ξ)W (y|x)
1

1+ρ . (48)

Ψy(P, s),
∑
x

P (x)(f(x)− ξ)es(f(x)−ξ)W (y|x)
1

1+ρ . (49)

We study the optimality conditions of the following opti-
mization problem, which is equivalent to max

P∈Pξ,s≥0
E1(ρ, P, s),

min
P,s

∑
y

Φy(P, s)1+ρ, (50)

subject to s ≥ 0, P (x) ≥ 0,∑
x

P (x)=1,∑
x

P (x)f(x)≤ξ.

The Lagrangian of the optimization problem in (50) is

L(P, s) =
∑
y

Φy(P, s)1+ρ − σs−
∑
x

ηxP (x)

− λ
(∑

x

P (x)− 1

)
− γ

∑
x

P (x)
(
ξ − f(x)

)
, (51)

where σ ≥ 0, ηx ≥ 0, λ ∈ R and γ ≥ 0 are the Lagrange
multipliers associated to the respective constraints in (50).

Let us denote by P̂ , ŝ the values of P , s optimizing (50).
Similarly, let us define Φ̂y , Φy

(
P̂ , ŝ

)
, Ψ̂y , Ψy

(
P̂ , ŝ

)
. By

taking the derivative of (51) with respect to P (x) and equating
it to zero we obtain the following optimality condition

(1 + ρ)
∑
y

eŝ(f(x)−ξ)W (y|x)
1

1+ρ
(
Φ̂y
)ρ

= ηx + λ+ γ
(
ξ − f(x)

)
. (52)

Likewise, by taking the derivative of (51) with respect to s
and equating it to zero yields the condition

(1 + ρ)
∑
y

Ψ̂y

(
Φ̂y
)ρ

= σ. (53)

Multiplying both sides of (52) by P̂ (x), summing over
x, and using that due to complementary slackness [13, Sec.
5.5.2], ηxP̂ (x) = 0, γ

∑
x P̂ (x)

(
ξ − f(x)

)
= 0, we obtain

λ = (1 + ρ)
∑
y

(
Φ̂y
)1+ρ

. (54)

Multiplying (52) by P̂ (x)(f(x)− ξ), summing over x, yields

(1 + ρ)
∑
y

Ψ̂y

(
Φ̂y
)ρ

=
∑
x

ηxP̂ (x)
(
f(x)− ξ

)
+ λ

∑
x

P̂ (x)
(
f(x)− ξ

)
− γ

∑
x

P̂ (x)
(
f(x)− ξ

)2
. (55)

Substituting (53) in (55), using that ηxP̂ (x)=0, we obtain

σ = λ
∑
x

P̂ (x)
(
f(x)− ξ

)
− γ

∑
x

P̂ (x)
(
f(x)− ξ

)2
. (56)

If the cost constraint is non-active, i. e.,
∑
x P̂ (x)f(x) < ξ,

the corresponding Lagrange multiplier is γ = 0 due to
complementary slackness. If the cost constraint is active,∑
x P̂ (x)f(x) = ξ, and from (56) we obtain

σ = −γ
∑
x

P̂ (x)
(
f(x)− ξ

)2
. (57)



Since σ ≥ 0, γ ≥ 0, from (57) we conclude that σ = γ = 0,
so in either case γ = 0. Substituting (54) into (52), yields∑

y

eŝ(f(x)−ξ)W (y|x)
1

1+ρ
(
Φ̂y
)ρ

=
∑
y

(
Φ̂y
)1+ρ

+
ηx

1 + ρ
,

(58)

and since ηx ≥ 0,∑
y

eŝ(f(x)−ξ)W (y|x)
1

1+ρ
(
Φ̂y
)ρ ≥∑

y

(Φ̂y)1+ρ. (59)

Finally, we use the definition of µ1(y, ρ) in (34) to write∑
y

Wn(y|x)
1

1+ρµ1(y, ρ)ρ

≥
∑
y

eŝ(fn(x)−nξ)Wn(y|x)
1

1+ρµ1(y, ρ)ρ (60)

≥
∑
y

µ1(y, ρ)1+ρ, (61)

where in (60) we used that, by assumption, fn(x) ≤ nξ; and
(61) follows from factorizing (60) and applying (59) to each of
the factors. The step (60) holds with equality for fn(x) = nξ,
and the step (61) is tight as long as P̂n(x) > 0.

APPENDIX B
OPTIMALITY CONDITIONS FOR E1(ρ) IN (46)

The Lagrangian of the optimization problem (46) is

L(P, a) = (1 + ρ)
∑
x

P (x)a(x)

− log
∑
y

(∑
x

P (x)ea(x)W (y|x)
1

1+ρ

)1+ρ

− λ
(∑

x

P (x)− 1

)
− γ

∑
x

P (x)
(
f(x)− ξ

)
, (62)

where λ ∈ R and γ ≥ 0 are the Lagrange multipliers associ-
ated to the constraints

∑
x P (x) = 1 and

∑
x P (x)f(x) ≤ ξ,

respectively.
Let P̂ , â(·), denote the values of P , a(·) optimizing (46).

Setting the derivative of L(P, a) with respect to a(x) to zero,
we obtain the following optimality condition,∑

y e
â(x)W (y|x)

1
1+ρ

(∑
x′ P̂ (x′)eâ(x′)W (y|x′′)

1
1+ρ

)ρ
∑
y

(∑
x′′ P̂ (x′′)eâ(x′′)W (y|x′′)

1
1+ρ

)1+ρ = 1,

(63)

for x ∈ X . Equating to zero the derivative of L(P, a) with
respect to P (x), and using (63) it follows that for P̂ , â(·),

(1 + ρ)
(
â(x)− 1

)
− λ− γ

(
f(x)− ξ

)
= 0. (64)

Due to complementary slackness, γ
∑
x P̂ (x)

(
f(x)− ξ

)
= 0.

Then, multiplying (64) by P̂ (x), summing over x ∈ X , yields

λ = (1 + ρ)
∑
x

P̂ (x)
(
â(x)− 1

)
. (65)

Substituting (65) in (64), we obtain that, for x ∈ X ,

â(x)−
∑
x̄

P̂ (x̄)â(x̄) =
γ

1 + ρ

(
f(x)− ξ

)
. (66)

When the cost constraint is inactive its associated Lagrange
multiplier is γ = 0. Hence, from (66) we obtain that â(x) =∑
x̄ P̂ (x̄)â(x̄), x ∈ X , is a constant. On the other hand, when

the cost constraint is active,
∑
x P̂ (x)f(x) = ξ and γ ≥ 0.

Then, (66) yields â(x) = sf(x) with s = γ
1+ρ ≥ 0.
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