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ABSTRACT

In the context of spectrum sensing, we investigate the perfor-

mance of detectors equipped with M antennas (co-located or

distributed) under Rayleigh fading, in terms of detection di-

versity. Rather than the high-SNR concept of diversity order

common in the communications literature, we adopt the no-

tion recently advocated by Daher and Adve in the radar com-

munity: the slope of the average probability of detection (P̄D)

vs. SNR curve at P̄D = 0.5. This definition is well suited to

spectrum sensing, which invariably deals with low SNR lev-

els. It is shown that the diversity order grows as M for an

optimal centralized detector having access to all observations,

whereas for the two distributed schemes considered (the mul-

tiantenna energy detector and the OR detector) it grows no

faster than
√
M .

Index Terms— Cognitive radio, spectrum sensing, detec-

tion diversity.

1. INTRODUCTION

Spectrum sensing is a key task in the Cognitive Radio (CR)

paradigm in order to limit harmful interference to licensed

users of the frequency band. By using multiple antennas (ei-

ther co-located or spatially distributed), the sensing system

can substantially improve its detection performance. In order

to quantify and compare the performance of different multi-

antenna detectors, some measure of the gain due to detection

diversity is required. One could adopt a definition analogous

to the one from the communications literature, i.e. the asymp-

totic slope of the average probability of missed detection with

respect to the signal-to-noise ratio (SNR) in a log-log scale,

for a fixed threshold (hence constant false alarm rate) [1] or

for a SNR-dependent threshold [2]. A similar asymptotic def-

inition based on J-divergence is given in [3].

In approaches in the communications area, the diversity

order is a high-SNR concept. This is not a problem as wire-

less systems usually achieve this asymptotic behavior in terms

of bit error rate at practical SNR values. However, spectrum

sensors for CR systems are expected to provide high detec-
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tion performance at much lower SNR values. This calls for a

different definition of the diversity order better suited to the

detection problem. For example, Daher and Adve [4] define

diversity order as the slope of the average probability of de-

tection (P̄D) curve with respect to the SNR at P̄D = 0.5.

Using this, [4] analyzed the performance of distributed radar

detectors with Swerling-II targets, in which each radar sensor

is equipped with multiple antennas, the steering vectors are

known and a single snapshot is used per sensor for detection.

When sensing on wireless channels, these assumptions have

to be suitably modified: antennas are usually omnidirectional,

and sensing times are longer in order to acquire several signal

samples.

In this paper, we characterize different spectrum sens-

ing schemes in independent Rayleigh fading in terms of the

Daher-Adve diversity order. Three practical schemes are

considered: a Generalized Likelihood Ratio (GLR) detector,

adequate for sensors with co-located antennas; and the En-

ergy Detector (ED) and OR detector, which are amenable to

distributed implementations.

2. SYSTEM MODEL

The detection system monitoring a given frequency band has

M antennas, and collects K samples per antenna. The com-

plex baseband representation of these samples is

ym = hmx+ σwm, 1 ≤ m ≤M (K × 1). (1)

Here hm is the channel coefficient from the primary transmit-

ter to antenna m; x is the vector of primary signal samples;

wm is the vector of noise samples at antenna m; and σ2 is the

noise power, assumed known and equal across the antennas.

We model x and {wm} as zero-mean white complex circular

Gaussian, power normalized, jointly independent, and tempo-

rally white. In terms of Y
.
= [y1 · · ·yM ], h

.
= [h1 · · ·hM ]H

and W
.
= [w1 · · ·wM ], we can write

Y = xhH + σW . (2)

The only dependence of the pdf of Y on the data is through

the sample covariance matrix R̂
.
= 1

KY HY . The true covari-

ance is R
.
= E{R̂} = σ2I + hhH , and the pdf is then

f(Y |R) =

[

1

π detR
exp{− tr(R−1R̂)}

]K

. (3)



The corresponding hypothesis test is cast as follows:

H0 : R = R0
.
= σ2I, H1 : R = R1

.
= σ2I + hhH . (4)

3. OPTIMAL AND PRACTICAL DETECTORS

The Neyman-Pearson detector (likelihood ratio test) is

ℓNP
.
= −2 log f(Y |R0)

f(Y |R1)

H1

≷
H0

γ, (5)

where γ is a suitable threshold. For our model,

ℓNP
.
= −2K log(1 +Mζ) +

2K

σ4

hHR̂h

(1 +Mζ)
(6)

with ζ
.
= ‖h‖2/(Mσ2) the instantaneous SNR. Thus the op-

timal test compares hHR̂h against a threshold. As h is un-

known in practice, this detector is not implementable.

3.1. Generalized Likelihood Ratio Detector

The GLR detector uses the Maximum Likelihood estimate of

h under H1 in lieu of its true value, resulting in a test com-

paring the largest eigenvalue of R̂ against a threshold [5]:

TGLR
.
= λmax

(

1

σ2
R̂

)

H1

≷
H0

γGLR. (7)

Under H0 the observations are temporally and spatially

white, hence KR̂ is a complex Wishart matrix. The dis-

tribution of KTGLR−µ
ν follows asymptotically (in K and

M ) a Tracy-Widom distribution [6], with bias and scale

given respectively by µ
.
= (
√
K − 1 +

√
M)2 and ν

.
=

(
√
K − 1 +

√
M)

(

1√
K−1

+ 1√
M

)1/3

, that is,

λ0
.
= E{TGLR|H0} = (µ− 1.77ν)/K. (8)

This asymptotic pdf is accurate for moderate K , M , so γGLR

can be computed for a fixed false alarm rate PFA.

UnderH1, and asymptotically in K , one has [5]

TGLR ∼ N
(

λ1 +
(M − 1)λ1

K(λ1 − 1)
, λ2

1/K

)

, (9)

with λ1
.
= 1 +Mζ the largest eigenvalue of R/σ2. Then the

probability of missed detection becomes

PMD = Q





λ1 − γGLR + (M−1)λ1

K(λ1−1)

λ1/
√
K



 . (10)

3.2. Energy Detector

The GLR detector requires crossproducts between the re-

ceived signals at each pair of antennas and hence it is not

well suited for distributed networks. In these scenarios, each

node could send its observed energy to a fusion center, where

all such quantities are added together. This scheme is thus a

multiantenna Energy Detector (ED):

TED =

M
∑

m=1

‖ym‖2
MKσ2

H1

≷
H0

γED. (11)

For large K , TED is approximately Gaussian so that the prob-

abilities of false alarm and missed detection become

PFA = Q
(

(γED − 1)
√
MK

)

, (12)

PMD = Q

(

(1 + ζ)− γED
√

(Mζ2 + 2ζ + 1)/(MK)

)

. (13)

3.3. OR Detector

Another distributed scheme is the OR detector, in which only

local decisions um ∈ {0, 1} are sent to the fusion center,

which declares H1 true if um = 1 for at least one value of

m. Note that since σ2 is known, the optimal local decision is

based on the observed energy:

‖ym‖2
Kσ2

um=0

≷
um=1

γOR, (14)

where we assumed equal thresholds (γOR) in the absence of

any a priori knowledge. The global PFA and PMD are

PFA = 1−
M
∏

m=1

(1 − P
(m)
FA ), PMD =

M
∏

m=1

P
(m)
MD , (15)

with P
(m)
FA and P

(m)
MD respectively given by (12) and (13) when

M = 1, γED ← γOR, and ζ = ζm
.
= |hm|2/σ2.

4. DIVERSITY ORDER ANALYSIS

Consider a slow fading scenario in which the channel gains

remain constant during the sensing window. Assuming a fixed

threshold, the probability of detectionPD is a random variable

with expected value given by

P̄D(ζ̄)
.
= Eζ{PD} =

∫ ∞

0

fζ(ζ)PD(ζ) dζ, (16)

with fζ(ζ) the pdf of ζ, and ζ̄
.
= Eζ{ζ} the mean SNR. Let

the minimum operational SNR ζ̄∗ of the detector be defined by

P̄D(ζ̄
∗) = 0.5. Following [4], the diversity order d is defined

as

d
.
=

∂P̄D(ζ̄)

∂ζ̄

∣

∣

∣

∣

ζ̄=ζ̄∗

, with P̄D(ζ̄
∗) =

1

2
. (17)



We assume uncorrelated Rayleigh fading, i.e. h is zero-

mean circular complex Gaussian with covarianceE{hhH} =
ρ2I. Then ζ̄ = ρ2/σ2, and ζ has the following pdf [7]:

fζ(ζ) =
MM

(M − 1)!

ζM−1

ζ̄M
exp {−Mζ/ζ̄}, ζ > 0. (18)

Unfortunately, (16) does not admit a closed form solu-

tion for any of the detectors discussed in Sec. 3. We propose

the following first-order piecewise approximation of PMD(ζ),
where ζ∗ is such that PMD(ζ

∗) = 0.5:

PMD(ζ) ≈







1, 0 < ζ < ζ1,
1
2 − a(ζ − ζ∗), ζ1 < ζ < ζ2,

0, ζ > ζ2,
(19)

where ζ1
.
= ζ∗ − 1

2a , ζ2
.
= ζ∗ + 1

2a and

a
.
= − ∂PMD(ζ)

∂ζ

∣

∣

∣

∣

ζ=ζ∗

=
∂PD(ζ)

∂ζ

∣

∣

∣

∣

ζ=ζ∗

. (20)

Substituting now (18) and (19) into (16) one obtains

P̄MD ≈ a

{

ζ2Γ

(

Mζ2

ζ̄
,M

)

− ζ1Γ

(

Mζ1

ζ̄
,M

)

− ζ̄

[

Γ

(

Mζ2

ζ̄
,M + 1

)

− Γ

(

Mζ1

ζ̄
,M + 1

)]}

(21)

where the incomplete Gamma function is defined as

Γ(x, α)
.
=

1

Γ(α)

∫ x

0

tα−1e−tdt, (22)

with Γ(α)
.
=
∫∞
0

tα−1e−tdt the standard Gamma function.

Taking derivatives in (21), noting that P̄D = 1 − P̄MD,

and after some algebra, one arrives at

d ≈ a

[

gM

(

ζ∗

ζ̄∗
+

1

2aζ̄∗

)

− gM

(

ζ∗

ζ̄∗
− 1

2aζ̄∗

)]

, (23)

where gM (x)
.
= Γ(Mx,M + 1). While (23) may look like

a rough approximation of the diversity order, we will show

in Sec. 5 that it effectively captures the behavior of P̄D in

Rayleigh fading environments.

4.1. GLR detector performance

Using the asymptotic distribution (10), one readily obtains the

parameters ζ∗ and a for this detector:

ζ∗GLR =
1

2M

[

β +
√

(2 + β)2 − 4γGLR

]

, (24)

aGLR =

√

KM2

2π

1− M−1
K(Mζ∗

GLR
)2

1 +Mζ∗GLR

, (25)

with β
.
= γGLR − K+M−1

K .

Now, finding the value of ζ̄∗ at which (21) equals 0.5 is

not straightforward. However, an obvious candidate is ζ̄∗ ≈

ζ∗GLR, since the instantaneous probability of missed detection

satisfies PMD(ζ
∗
GLR) = 0.5. With ǫGLR

.
= 1

2aGLRζ∗

GLR

, this

yields

dGLR ≈ aGLR [gM (1 + ǫGLR)− gM (1− ǫGLR)] , (26)

where both aGLR and ζ∗GLR depend on the system parameters

K , M and PFA. Noting that the bracketed term in (26) is less

than 1, the following upper bound is obtained:

dGLR < aGLR <

√

KM2

2π
. (27)

It can be shown that as M →∞ and for ǫ > 0, gM (1+ǫ)→ 1
whereas gM (1− ǫ)→ 0. Thus, for large M , dGLR ≈ aGLR.

4.2. Energy Detection performance

In this case, the parameters for the first-order piecewise ap-

proximation of (13) are ζ∗ED = γED − 1 and

aED =

√

KM

2π

1
√

M(ζ∗ED)
2 + 2ζ∗ED + 1

, (28)

so that

dED < aED <

√

KM

2π
, (29)

with dED → aED as M →∞.

4.3. OR detection performance

Defining the vector of local SNRs ζ
.
= [ζ1 · · · ζM ]T , the prob-

ability of missed detection of the OR detector is

P̄MD =

∫

fζ(ζ)PMD(ζ)dζ =

[∫ ∞

0

fζ(ζ)P
(m)
MD (ζ)dζ

]M

.

The same technique as in the previous sections, particularized

for M = 1, can be used now to approximate the integral.

After some algebra, one arrives at

P̄MD(ζ̄) ≈
[

1− 2aORζ̄ sinh

(

1

2aORζ̄

)

e−ζ∗

OR/ζ̄

]M

, (30)

ζ∗OR =
Q−1(1 − M

√
1− PFA)√

K
, aOR =

√

K

2π

1

1 + ζ∗OR

.

Taking the derivative of (30), one finds that

dOR ≈
M( M
√
2− 1)

2aORζ̄∗

[

ζ∗OR − 1
2aOR

ζ̄∗
+ 1

]

. (31)

One must solve for ζ̄∗ in P̄MD(ζ̄
∗) = 1

2 in (30), i.e.,

1− 1
M
√
2
= 2aORζ̄

∗ sinh

(

1

2aORζ̄∗

)

e−ζ∗

OR/ζ̄
∗

, (32)

which can be easily solved numerically.
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Fig. 1. Accuracy of the proposed approximations. Solid lines:

simulation results. Dashed lines: analytical approximations.

PFA = 0.01, K = 256.
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Fig. 2. Diversity order d of the three detectors.

5. NUMERICAL RESULTS

We fix PFA = 0.01 throughout. First we check the accuracy

of our approximations: Fig. 1 shows the P̄D(ζ̄) curves for the

three detectors in Rayleigh fading, obtained by Monte Carlo

simulation, as well as the corresponding piecewise linear ap-

proximations from the previous sections. These match the

empirical curves reasonably well around P̄D ≈ 1
2 . Hence, the

detection performance can be accurately described using just

two parameters: the minimum operational SNR ζ̄∗ and the

diversity order d.

Fig. 2 shows the analytical approximations for the diver-

sity order as a function of M . These curves have to be con-

sidered together with those in Fig. 3 for the minimum oper-

ational SNR ζ̄∗. From Figs. 2 and 3 the performance advan-

tage of the GLR detector is clear. The diversity order of this

centralized detector grows almost linearly with the number

of antennas, whereas that of the ED is approximately propor-
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Fig. 3. Minimum operational SNR of the three detectors.

tional to
√
M . As for the OR detector, it is difficult to find

analytical bounds for its diversity order in terms of M . By

comparison with ED, it is seen in Fig. 2 that it increases at

a rate no larger than
√
M . It is conjectured that the diversity

order of the OR detector is logarithmic in M , similarly to [4].
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