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ABSTRACT

In the context of spectrum sensing, we investigate the perfor-
mance of detectors equipped with M antennas (co-located or
distributed) under Rayleigh fading, in terms of detection di-
versity. Rather than the high-SNR concept of diversity order
common in the communications literature, we adopt the no-
tion recently advocated by Daher and Adve in the radar com-
munity: the slope of the average probability of detection (Pp)
vs. SNR curve at Pp = 0.5. This definition is well suited to
spectrum sensing, which invariably deals with low SNR lev-
els. It is shown that the diversity order grows as M for an
optimal centralized detector having access to all observations,
whereas for the two distributed schemes considered (the mul-
tiantenna energy detector and the OR detector) it grows no
faster than \/M .

Index Terms— Cognitive radio, spectrum sensing, detec-
tion diversity.

1. INTRODUCTION

Spectrum sensing is a key task in the Cognitive Radio (CR)
paradigm in order to limit harmful interference to licensed
users of the frequency band. By using multiple antennas (ei-
ther co-located or spatially distributed), the sensing system
can substantially improve its detection performance. In order
to quantify and compare the performance of different multi-
antenna detectors, some measure of the gain due to detection
diversity is required. One could adopt a definition analogous
to the one from the communications literature, i.e. the asymp-
totic slope of the average probability of missed detection with
respect to the signal-to-noise ratio (SNR) in a log-log scale,
for a fixed threshold (hence constant false alarm rate) [1] or
for a SNR-dependent threshold [2]. A similar asymptotic def-
inition based on J-divergence is given in [3].

In approaches in the communications area, the diversity
order is a high-SNR concept. This is not a problem as wire-
less systems usually achieve this asymptotic behavior in terms
of bit error rate at practical SNR values. However, spectrum
sensors for CR systems are expected to provide high detec-
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tion performance at much lower SNR values. This calls for a
different definition of the diversity order better suited to the
detection problem. For example, Daher and Adve [4] define
diversity order as the slope of the average probability of de-
tection (Pp) curve with respect to the SNR at Pp = 0.5.
Using this, [4] analyzed the performance of distributed radar
detectors with Swerling-II targets, in which each radar sensor
is equipped with multiple antennas, the steering vectors are
known and a single snapshot is used per sensor for detection.
When sensing on wireless channels, these assumptions have
to be suitably modified: antennas are usually omnidirectional,
and sensing times are longer in order to acquire several signal
samples.

In this paper, we characterize different spectrum sens-
ing schemes in independent Rayleigh fading in terms of the
Daher-Adve diversity order. Three practical schemes are
considered: a Generalized Likelihood Ratio (GLR) detector,
adequate for sensors with co-located antennas; and the En-
ergy Detector (ED) and OR detector, which are amenable to
distributed implementations.

2. SYSTEM MODEL

The detection system monitoring a given frequency band has
M antennas, and collects K samples per antenna. The com-
plex baseband representation of these samples is

Ym = hpmx +ow,,, 1<m<M (K x1). (@D

Here h,, is the channel coefficient from the primary transmit-
ter to antenna m; x is the vector of primary signal samples;
w,, is the vector of noise samples at antenna m; and o2 is the
noise power, assumed known and equal across the antennas.
We model @ and {w,, } as zero-mean white complex circular
Gaussian, power normalized, jointly independent, and tempo-
rally white. Interms of Y = [y1 - - ynr], b = [hy -+ hyg]?
and W = [w; - - - wyy], we can write

Y = zh? + oW, )

The only dependence of the pdf of ¥ on the data is through
the sample covariance matrix R = %YH Y . The true covari-
ance is R = E{R} = ¢>I + hh', and the pdf is then
1K
exp{—tr(R"'R)}| . (3
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The corresponding hypothesis test is cast as follows:

Ho:R=Ry=0%I, Hi:R=R;=0c’T+hh". (4

3. OPTIMAL AND PRACTICAL DETECTORS

The Neyman-Pearson detector (likelihood ratio test) is

J(Y|Ro) ™
VIR 2 ®)

Al

éNp = -2 log

where 7y is a suitable threshold. For our model,

2K hHRh

éNp = —2K10g(1 +MC) + Tm

(6)

with ¢ = ||h||?/(Mc?) the instantaneous SNR. Thus the op-
timal test compares hf Rh against a threshold. As h is un-
known in practice, this detector is not implementable.

3.1. Generalized Likelihood Ratio Detector

The GLR detector uses the Maximum Likelihood estimate of
h under H; in lieu of its true Va}ue, resulting in a test com-
paring the largest eigenvalue of R against a threshold [5]:

. 1\ %
TGLR = Amax ;R 2 YGLR- @)

Ho

Under H, the observations are temporally and spatially
white, hence KR is a complex Wishart matrix. The dis-
tribution of M follows asymptotically (in K and
M) a Tracy- W1d0m distribution [6], with bias and scale

given respectively by 1 = (VK —1+ vVM)? and v =
/
(VK -1+v )(\/— \/—) , that is,

)\0 = E{TGLR|H0} = (/L - 177V)/K (8)

This asymptotic pdf is accurate for moderate K, M, so YgLr
can be computed for a fixed false alarm rate Pra .
Under H;, and asymptotically in K, one has [5]

(M -1\

2
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with A\; = 1 + M the largest eigenvalue of R/o2. Then the
probability of missed detection becomes

A1 — YGLR + %

Pyp =Q M/VE
1

(10)

3.2. Energy Detector

The GLR detector requires crossproducts between the re-
ceived signals at each pair of antennas and hence it is not
well suited for distributed networks. In these scenarios, each
node could send its observed energy to a fusion center, where
all such quantities are added together. This scheme is thus a
multiantenna Energy Detector (ED):
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For large K, Txp is approximately Gaussian so that the prob-
abilities of false alarm and missed detection become

Pea = Q (w0 — WME), (12)
_ (1+¢) — b
P =@ <¢<M<2 ot 1>/<MK>> -

3.3. OR Detector

Another distributed scheme is the OR detector, in which only
local decisions u,, € {0,1} are sent to the fusion center,
which declares H; true if u,, = 1 for at least one value of
m. Note that since o2 is known, the optimal local decision is
based on the observed energy:

2 u,,=0
N (14)

Um=1

where we assumed equal thresholds (yor) in the absence of
any a priori knowledge. The global Prs and Pyip are

M M
Pa=1-[[0-A). Awn=[] AR, 09
m=1 m=1

with ng” and Pl\(/["g) respectively given by (12) and (13) when
M =1,9EDp < Yor, and ¢ = ¢ = |hp|? /0.

4. DIVERSITY ORDER ANALYSIS

Consider a slow fading scenario in which the channel gains
remain constant during the sensing window. Assuming a fixed
threshold, the probability of detection Pp is arandom variable
with expected value given by

Po(() = E{Pp} = /O N fe(Q)Pp(¢)d¢,  (16)

with f¢(¢) the pdf of ¢, and fii E¢{¢} the mean SNR. Let
the minimum operational SNR C* of the detector be defined by
Pp(¢*) = 0.5. Following [4], the diversity order d is defined
as

1= 20

: 5 o L
9 , with Pp((*) = 5 (17)



We assume uncorrelated Rayleigh fading, i.e. h is zero-
mean circular complex Gaussian with covariance E{hht} =
p?I. Then { = p? /02, and ¢ has the following pdf [7]:

MIM M-1

A S
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Unfortunately, (16) does not admit a closed form solu-

tion for any of the detectors discussed in Sec. 3. We propose

the following first-order piecewise approximation of Pyp((),
where ¢* is such that Pyip(¢(*) = 0.5:

fe(Q) = exp {—M¢/C}, ¢>0. (18)

1, 0< (<,
Pup(¢) =< 3 —a(C—<¢*), G <(<(, (19)
0, ¢ > (2,
where ¢ = (* — %, Go=("+ ﬁ and
L aPMD(C)‘ _ 6PD(C)‘ 20
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Substituting now (18) and (19) into (16) one obtains
M M
Pup ~ a {er ( C<2 ) ar ( fl M

—4[ (J\/[QCQ,M—H)—F(MQQ M+1>}} Q1)

where the incomplete Gamma function is defined as
I(z,0) = 1 /z e tetde (22)
’ I'(a) Jo ’

with T'(er) = [;* t*e~"dt the standard Gamma function.
Taking derivatives in (21), noting that Pp = 1 — Pup,
and after some algebra, one arrives at

¢, ¢
oo (G mg) o (G )] @

where gps(x) = I'(Mx, M + 1). While (23) may look like
a rough approximation of the diversity order, we will show
in Sec. 5 that it effectively captures the behavior of Pp in
Rayleigh fading environments.

4.1. GLR detector performance

Using the asymptotic distribution (10), one readily obtains the
parameters (* and a for this detector:

Gk = 537 [ﬁ+\/2+52—470m SCE)
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AGLR o0 1+ My, (25)

K+M 1
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Now, finding the value of ¢* at which (21) equals 0.5 is
not straightforward. However, an obvious candidate is (* ~

(&g since the instantaneous probability of missed detection
satisfies Pyp (C&g) = 0.5. With eqrr = this
yields

1
2a6LRCG iR’

dair ~ acir [gm (1 + egir) —gm (1 —ecrr)],  (26)

where both agrr and (¢, p depend on the system parameters
K, M and Pra. Noting that the bracketed term in (26) is less
than 1, the following upper bound is obtained:

KM?
or

dgLr < agLr < 27)

It can be shown thatas M — oo and fore > 0, gps(1+€) — 1
whereas gpr(1 — €) — 0. Thus, for large M, dgrr ~ aGLr.

4.2. Energy Detection performance

In this case, the parameters for the first-order piecewise ap-
proximation of (13) are (i, = vep — 1 and

KM 1
Agp = ) = ’ (28)
2m /M ((ip)? + 2G5 + 1
so that
KM
dep < agp < —271' s (29)

with dgp — agp as M — oo.

4.3. OR detection performance

Defining the vector of local SNRs ¢ = [(; - - - (]
ability of missed detection of the OR detector is

, the prob-

A = [ e€Rm(@c = | [~ fRB O] :

The same technique as in the previous sections, particularized
for M = 1, can be used now to approximate the integral.
After some algebra, one arrives at
M
_> eCOR/C] ., (30)

aor¢

pMD (E) ~ |:1 — 2&01{5 sinh <

. Q7'(1— N/T—Pra) /K 1
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Taking the derivative of (30), one finds that
M(¥2-1) lcz;R

1
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31
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One must solve for ¢* in Pyp(¢*) = 4 in (30), i.c.,

) COR/C (32)

1 _
— —— = 2a0r(”* sinh
% oRG (2aOR<

which can be easily solved numerically.
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Fig. 1. Accuracy of the proposed approximations. Solid lines:
simulation results. Dashed lines: analytical approximations.
Pra = 0.01, K = 256.
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Fig. 2. Diversity order d of the three detectors.
5. NUMERICAL RESULTS

We fix Pra = 0.01 throughout. First we check the accuracy
of our approximations: Fig. 1 shows the Pp (¢) curves for the
three detectors in Rayleigh fading, obtained by Monte Carlo
simulation, as well as the corresponding piecewise linear ap-
proximations from the previous sections. These match the
empirical curves reasonably well around Pp ~ % Hence, the
detection performance can be accurately described using just
two parameters: the minimum operational SNR ¢* and the
diversity order d.

Fig. 2 shows the analytical approximations for the diver-
sity order as a function of M. These curves have to be con-
sidered together with those in Fig. 3 for the minimum oper-
ational SNR ¢*. From Figs. 2 and 3 the performance advan-
tage of the GLR detector is clear. The diversity order of this
centralized detector grows almost linearly with the number
of antennas, whereas that of the ED is approximately propor-

Fig. 3. Minimum operational SNR of the three detectors.

tional to \/M . As for the OR detector, it is difficult to find
analytical bounds for its diversity order in terms of M. By
comparison with ED, it is seen in Fig. 2 that it increases at
a rate no larger than v/M. Tt is conjectured that the diversity
order of the OR detector is logarithmic in M, similarly to [4].
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